Visualizations to Support Interactive Goal Model Analysis

Jennifer Horkoff¹
Eric Yu²
Department of Computer Science¹
Faculty of Information²
jenhork@cs.utoronto.ca yu@ischool.utoronto.ca
University of Toronto
September 28, 2010
REV'10

Challenges in Goal Models

- Goal Models can be used as part of an RE process
 - Capture and visually present:
 - Stakeholders
 - □ Their needs (goals)
 - Relationships between goals, and
 - Stakeholder interdependencies
 - Show alternative ways to achieve goals (design alternatives)
 - Analyze the effects of design alternatives
- However...
 - Goal models are often complex and difficult to read
 - Challenging to following the reasoning through complex paths in the model
 - □ Example: inflo Case Study

Example: inflo Case Study

Challenges in Interactive Goal Model Analysis

- Interactive goal model analysis:
 - Used to supplement the incomplete nature of the model with stakeholder domain knowledge
 - Encourages stakeholder participation in modeling and evaluation
- Recent studies testing the utility of such evaluation revealed several usability issues (PoEM'10):
 - Users have difficulty choosing starting points for analysis (initial values)
 - Users have difficulty understanding conflicts in analysis results
- These difficulties can be alleviated with visualization techniques

Background: Goal Models

■ We use i* as an example goal modeling framework

- A question/scenario/alternative is placed on the model and its affects are propagated "forward" through model links
- Interactive: user input (human judgment) is used to decide on partial or conflicting evidence "What is the resulting value?"
- Publications:
 - CAiSE'09 (short paper)
 - PoEM'09,
 - IJISMD

- A question/scenario/alternative is placed on the model and its affects are propagated "forward" through model links
- Interactive: user input (human judgment) is used to decide on partial or conflicting evidence "What is the resulting value?"
- Publications:
 - CAiSE'09 (short paper)
 - PoEM'o9,
 - IJISMD

- A question/scenario/alternative is placed on the model and its affects are propagated "forward" through model links
- Interactive: user input (human judgment) is used to decide on partial or conflicting evidence "What is the resulting value?"
- Publications:
 - CAiSE'09 (short paper)
 - PoEM'09,
 - IJISMD

- A question/scenario/alternative is placed on the model and its affects are propagated "forward" through model links
- Interactive: user input (human judgment) is used to decide on partial or conflicting evidence "What is the resulting value?"
- Publications:
 - CAiSE'09 (short paper)
 - PoEM'09,
 - IJISMD

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

□ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

□ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

A question/scenario/constraints are placed on the model and its affects are propagated "backward" through model links

> Asks for human judgment "What incoming values could produce the target value?"

 Model is iteratively encoded in CNF form and passed to a SAT solver

■ Publications:

- istar'o8,
- ER'10

Qualitative Studies of Interactive Goal Model Analysis

- 11 studies were conducted in previous work to the utility of interactive goal model analysis
 - Ten studies had individuals analyzing models for up to 2 hours
 - 1 study involved a group implementing the inflo "back-of-the-envelope" calculation modeling tool
 - Results described in PoEM'10
- Observations pointed to several analysis usability issues
 - In this work we focus on two issues: initial value selection and conflict comprehension

Issue #1

Issue: Starting Points for Analysis

- Users had difficulties knowing how or where to start analysis
 - When given an analysis question: problems finding intentions to place initial labels
 - When coming up with their own analysis question: difficulties knowing how to start analysis
- Suggested analysis methodology
 - Start forward analysis by identifying leaf intentions
 - Start backward analysis by identifying root intentions
 - All participants using the methodology had difficulties finding roots or leaves
 - □ i* models are not like regular tree-shaped graphs:
 - Some links do not have an obvious direction
 - Easy to ignore links across actor boundaries
 - Cycles leads to non-conventional layout

Challenge: Where are the Leaves and Roots?

- Example from individual study: conference sustainability PC and Publicity Chair
- Leaf: an intention that has no "incoming" links
- Root: an intention that has no "outgoing" links

Visual Intervention: Automatic Leaf and Root Intention Highlighting

 OpenOME implementation has "Mark Model Leaves" (green) or "Mark Model Roots" (blue) options

Issue #2

Issue: Understanding Conflicts

- Conflict: the case where the SAT solver used in the backward analysis procedure cannot find a solution over a CNF model encoding
 - For one or more intentions, i, both v(i) and not v(i) hold, where v is an analysis value, e.g. S(i) and not S(i)
- "Conflict" in goal modeling is an overloaded term
 - There is a conflict label, meaning roughly equal amounts of positive and negative evidence
 - Two alternatives can "conflict" in relation to one goal

Issue: Understanding Conflicts

- We can use the "UNSAT core" to help understand conflicts
 - UNSAT core: an unsatisfiable subset of clauses in a CNF representing the model
 - Helps to isolate the intentions involved in the conflict
 - Previously, we presented the UNSAT core to the user in text form
 - Users had difficulty understanding the conflict and relating the UNSAT core to the model

Challenge: Where are the Conflicts?

Challenge: Where are the Conflicts?

Visual Intervention: Conflict Highlighting

- Automatically find all intentions involved in clauses in the UNSAT core
 - Highlight intentions orange in the model
- Find the "logical sources of the conflict", i.e. the intentions for which v(i) is true and not true
 - Highlight intentions red in the model
- Users are presented with a list of intentions involved in the conflict
 - The assigned analysis value in the conflicting situation is displayed

Visual Intervention: Conflict Highlighting

Visual Intervention: Conflict Highlighting The following intentions are involved in the conflict:

Visual Intervention: Conflict Highlighting
The following intentions are involved in the conflict:

Visualizations Applied

- Five follow-up studies tested new visualizations
- Participants were asked about the new interventions:
 - Do the leaves/roots highlighted in the model make sense?
 - Can you understand why there is a conflict?
- Qualitative analysis of results (no statistical significance)
- Several threats to validity described in paper

Results

- Leaf and Root Intention Highlighting:
 - A few roots and leaves were initially surprising, but upon examination the links became clear
 - Difference between global vs. local leaves and roots became apparent
 - Algorithm finds global leaves and roots
 - Participants often focused on local leaves and roots
 - -> Future improvements could highlight both types

Results

- Conflict Highlighting:
 - A considerable amount of knowledge of i* and the analysis procedure was needed to understand the causes of the conflict
 - Highlighting helped the study facilitators explain the conflicts to participants
 - -> i* analysis experience or the presence of an experienced facilitator is needed to gain the full benefits of interactive analysis
 - Similar conclusions as in the initial studies (PoEM'10)

Conclusions and Future Work

- Although goal model analysis can be helpful, comprehension difficulties exist
 - Applied two visual interventions to help alleviate these difficulties
- Future work should look for additional visual enhancements for model analysis:
 - Highlighting areas needing human judgment (done)
 - Highlighting areas affected by changes in the model (in progress)
- Future work could take an action research approach
 - Case studies in industrial settings

Thank you

- □ jenhork@cs.utoronto.ca
- □ www.cs.utoronto.ca/~jenhork
- □ yu@ischool.utoronto.ca
- □ <u>www.cs.utoronto.ca/~eric</u>
- OpenOME:
 - https://se.cs.toronto.edu/trac/ome

